Ml & Ai

Top 20 parasta R -koneoppimispakettia, jotka kannattaa tarkistaa nyt

Top 20 Best R Machine Learning Packages Check Out Now

Koti ML & AI Top 20 parasta R -koneoppimispakettia, jotka kannattaa tarkistaa nyt LähettäjäMehedi Hasan SisäänML & AI 1385 1

SISÄLLYS

  1. Parhaat R -koneoppimispaketit
    1. 1. puuttuu
    2. 2. satunnainen metsä
    3. 3. e1071
    4. 4. Rpart
    5. 5. KernLab
    6. 6. nnet
    7. 7. dplyr
    8. 8. ggplot2
    9. 9. Wordcloud
    10. 10. tidyr
    11. 11. kiiltävä
    12. 12. tm
    13. 13. MICE -paketti
    14. 14. kuvaaja
    15. 15. ROCR
    16. 16. DataExplorer
    17. 17. ml
    18. 18. arules
    19. 19. mboost
    20. 20. juhla
  2. Loppu ajatukset

Lähes kaikki aloittelevat datatieteilijät ja koneoppimisen kehittäjät ovat hämmentyneitä ohjelmointikielen valitsemisesta. He kysyvät aina, mikä ohjelmointikieli on paras heidän koneoppimis- ja tietojenkäsittelyprojektilleen. Joko haemme pythonia, R: tä tai MatLabia. No, valinta a ohjelmointikieli riippuu kehittäjien toiveista ja järjestelmävaatimuksista. Muiden ohjelmointikielien lisäksi R on yksi potentiaalisimmista ja loistavimmista ohjelmointikielistä, jolla on useita R -koneoppimispaketteja sekä ML-, AI- että datatiehankkeisiin.



Tämän seurauksena voi kehittää projektiaan vaivattomasti ja tehokkaasti käyttämällä näitä R -koneoppimispaketteja. Kagglen tutkimuksen mukaan R on yksi suosituimmista avoimen lähdekoodin koneoppimiskielistä.

Parhaat R -koneoppimispaketit


R on avoimen lähdekoodin kieli, jotta ihmiset voivat osallistua kaikkialta maailmasta. Voit käyttää koodissa musta laatikko, jonka on kirjoittanut joku muu. R: ssä tätä mustaa laatikkoa kutsutaan paketiksi. Paketti on vain valmiiksi kirjoitettu koodi, jota kuka tahansa voi käyttää toistuvasti. Alla esittelemme 20 parasta R -koneoppimispakettia.





1. puuttuu


karaattiaPaketti CARET viittaa luokitus- ja regressioharjoitteluun. Tämän CARET -paketin tehtävänä on integroida mallin koulutus ja ennustus. Se on yksi parhaista R -paketeista koneoppimiseen ja datatieteeseen.

Parametreja voidaan hakea yhdistämällä useita toimintoja tietyn mallin yleisen suorituskyvyn laskemiseksi käyttämällä tämän paketin ruudukon hakumenetelmää. Kun kaikki kokeilut on suoritettu onnistuneesti, ruudukkohaku löytää lopulta parhaat yhdistelmät.



Tämän paketin asentamisen jälkeen kehittäjä voi ajaa nimiä (getModelInfo ()) nähdäkseen 217 mahdollista toimintoa, jotka voidaan suorittaa vain yhden toiminnon kautta. Ennustavan mallin rakentamiseen CARET -paketti käyttää juna () -funktiota. Tämän funktion syntaksi:

juna (kaava, data, menetelmä)

Dokumentointi

2. satunnainen metsä


satunnainen metsä

RandomForest on yksi suosituimmista konepaketin R -paketeista. Tätä R -koneoppimispakettia voidaan käyttää regressio- ja luokittelutehtävien ratkaisemiseen. Lisäksi sitä voidaan käyttää puuttuvien arvojen ja poikkeamien kouluttamiseen.

Tätä R -koneoppimispakettia käytetään yleensä useiden päätöspuiden määrän luomiseen. Pohjimmiltaan se ottaa satunnaisia ​​näytteitä. Ja sitten havainnot annetaan päätöspuuhun. Lopuksi päätöspuusta tuleva yhteinen tuotos on lopullinen tulos. Tämän funktion syntaksi:

randomForest (kaava =, data =)

Dokumentointi

3. e1071


e1071

Tämä e1071 on yksi yleisimmin käytetyistä R -paketeista koneoppimiseen. Tämän paketin avulla kehittäjä voi toteuttaa tukivektorikoneita (SVM), lyhyimmän polun laskennan, pussillisen klusteroinnin, Naive Bayes -luokituksen, lyhytaikaisen Fourier-muunnoksen, sumean klusteroinnin jne.

Esimerkiksi IRIS -tietojen SVM -syntaksi on:

svm (Laji ~ Sepal. Pituus + Sepal. Leveys, data = iiris)

Dokumentointi

4. Rpart


rpart

Rpart tarkoittaa rekursiivista osiointia ja regressioharjoittelua. Tämä koneoppimisen R -paketti voidaan suorittaa molemmissa tehtävissä: luokittelu ja regressio. Se toimii käyttämällä kaksivaiheista vaihetta. Tulostusmalli on binääripuu. Plot () -funktiota käytetään tulostustuloksen piirtämiseen. Lisäksi on olemassa vaihtoehtoinen funktio prp () -funktio, joka on joustavampi ja tehokkaampi kuin perusdiagrammi () -funktio.

Funktiota rpart () käytetään muodostamaan riippumattoman ja riippuvaisen muuttujan välinen suhde.Syntaksi on:

rpart (kaava, data =, menetelmä =, ohjaus =)

jossa kaava on riippumattomien ja riippuvaisten muuttujien yhdistelmä, data on tietojoukon nimi, menetelmä on tavoite ja ohjaus on järjestelmävaatimuksesi.

Dokumentointi

5. KernLab


Jos haluat kehittää projektiasi ytimen pohjalta koneoppimisalgoritmit , voit käyttää tätä R -pakettia koneoppimiseen. Tätä pakettia käytetään SVM: ään, ytimen ominaisuusanalyysiin, sijoitusalgoritmiin, pisteiden primitiiviin, Gaussin prosessiin ja moniin muihin. KernLabia käytetään laajalti SVM -toteutuksissa.

Käytettävissä on erilaisia ​​ytimen toimintoja. Jotkut ytimen toiminnot mainitaan tässä: polydot (polynomiydinfunktio), tanhdot (hyperbolinen tangenttiydintoiminto), laplacedot (laplacian -ytimen toiminto) jne. Näitä toimintoja käytetään kuvion tunnistusongelmien suorittamiseen. Käyttäjät voivat kuitenkin käyttää ytimen toimintojaan ennalta määritettyjen ytimen toimintojen sijasta.

Dokumentointi

6. nnet


nnetJos haluat kehittää koneoppimissovelluksesi käyttämällä keinotekoista hermoverkkoa (ANN), tämä nnet -paketti saattaa auttaa sinua. Se on yksi suosituimmista ja helpoimmista toteuttaa hermoverkkojen paketti. Mutta se on rajoitus, että se on yksi kerros solmuja.

Tämän paketin syntaksi on:

nnet (kaava, data, koko)

Dokumentointi

7. dplyr


Yksi datatieteen laajimmin käytetyistä R -paketeista. Se tarjoaa myös joitain helppokäyttöisiä, nopeita ja johdonmukaisia ​​toimintoja tietojen käsittelyyn. Hadley Wickham kirjoittaa tämän datatieteen ohjelmointipaketin. Tämä paketti sisältää joukon verbejä eli mutatoida (), valita (), suodattaa (), tiivistää () ja järjestää ().

Tämän paketin asentamiseksi sinun on kirjoitettava tämä koodi:

install.packages (dplyr)

Tämän paketin lataamiseksi sinun on kirjoitettava tämä syntaksi:

kirjasto (dplyr)

Dokumentointi

8. ggplot2


Toinen tyylikkäimmistä ja esteettisimmistä datatieteen grafiikkakehyspaketeista on ggplot2. Se on järjestelmä grafiikan luomiseen grafiikan kieliopin perusteella. Tämän tietotekniikkapaketin asennussyntaksi on:

install.packages (ggplot2)

Dokumentointi

9. Wordcloud


wordCloud

Kun yksi kuva koostuu tuhansista sanoista, sitä kutsutaan Wordcloudiksi. Pohjimmiltaan se on tekstidatan visualisointi. Tätä R: ää käyttävää koneoppimispakettia käytetään sanojen esityksen luomiseen, ja kehittäjä voi muokata Wordcloudia mieltymystensä mukaan, kuten järjestää sanat satunnaisesti tai saman taajuuden sanat yhdessä tai korkeataajuiset sanat keskellä jne.

R -koneoppimiskielellä Wordcloudin luomiseen on käytettävissä kaksi kirjastoa: Wordcloud ja Worldcloud2. Tässä näytämme WordCloud2: n syntaksin. Jos haluat asentaa WordCloud2: n, sinun on kirjoitettava:

1. vaatia (devtools)
2. install_github (lchiffon/wordcloud2)

excel-laskunumerot alueella

Tai voit käyttää sitä suoraan:

kirjasto (wordcloud2)

Dokumentointi

10. tidyr


Toinen datatieteen laajalti käytetty r -paketti on tidyr. Tämän tietojenkäsittelyn r -ohjelmoinnin tavoitteena on tietojen siistiminen. Kun siisti, muuttuja sijoitetaan sarakkeeseen, havainto sijoitetaan riville ja arvo on solussa. Tämä paketti kuvaa tavanomaisen tavan tietojen lajitteluun.

Asennukseen voit käyttää tätä koodin osaa:

install.packages (tidyr)

Latausta varten koodi on:

kirjasto (tidyr)

Dokumentointi

11. kiiltävä


R -paketti, Shiny, on yksi datatieteen web -sovelluskehyksistä. Se auttaa rakentamaan verkkosovelluksia R: stä vaivattomasti. Joko kehittäjä voi asentaa ohjelmiston jokaiseen asiakasjärjestelmään tai ohjaamon isännöimään verkkosivua. Kehittäjä voi myös rakentaa koontinäyttöjä tai upottaa ne R Markdown -asiakirjoihin.

Lisäksi Shiny -sovelluksia voidaan laajentaa erilaisilla skriptikielillä, kuten html -widgetit, CSS -teemat ja JavaScript Toiminnot. Sanalla sanoen voimme sanoa, että tämä paketti on yhdistelmä R: n laskentatehosta ja modernin webin vuorovaikutteisuudesta.

Dokumentointi

12. tm


Sanomattakin on selvää, että tekstin louhinta on nykyään kehittyvä koneoppimisen sovellus. Tämä R -koneoppimispaketti tarjoaa puitteet tekstin louhintatehtävien ratkaisemiselle. Tekstin louhintaohjelmassa, eli tunteiden analysoinnissa tai uutisten luokittelussa, kehittäjällä on erilaisia ​​työläitä töitä, kuten ei -toivottujen ja epäolennaisten sanojen poistaminen, välimerkintöjen poistaminen, pysäytyssanojen poistaminen ja paljon muuta.

Tm -paketti sisältää useita joustavia toimintoja, jotka tekevät työstäsi vaivatonta, kuten removeNumbers (): poistaa numerot annetusta tekstiasiakirjasta, weightTfIdf (): termi Frequency ja käänteinen asiakirjan taajuus, tm_reduce (): muunnosten yhdistäminen, removePunctuation () to poista välimerkit annetusta tekstiasiakirjasta ja paljon muuta.

Dokumentointi

13. MICE -paketti


Hiiret

Koneoppimispaketti, jossa on R, MICE, viittaa monimuuttujaimputaatioon ketjutettujen sekvenssien kautta. Lähes koko ajan projektin kehittäjä kohtaa yhteisen ongelman koneoppimisen tietojoukossa, joka on puuttuva arvo. Tätä pakettia voidaan käyttää puuttuvien arvojen laskemiseen useilla tekniikoilla.

Tämä paketti sisältää useita toimintoja, kuten puuttuvien tietokuvioiden tarkastamisen, laskennallisten arvojen laadun diagnosoinnin, valmiiden tietojoukkojen analysoinnin, laskennallisen datan tallentamisen ja viennin eri muodoissa sekä monia muita toimintoja.

Dokumentointi

14. kuvaaja


igraph

Verkkoanalyysipaketti, igraph, on yksi tehokkaista datatieteen R -paketeista. Se on kokoelma tehokkaita, tehokkaita, helppokäyttöisiä ja kannettavia verkkoanalyysityökaluja. Lisäksi tämä paketti on avoimen lähdekoodin ja ilmainen. Lisäksi igraphn voidaan ohjelmoida Pythonille, C/C ++: lle ja Mathematicalle.

Tässä paketissa on useita toimintoja satunnaisten ja säännöllisten kaavioiden luomiseen, kaavion visualisointiin jne. Voit myös työskennellä suuren kuvaajan kanssa käyttämällä tätä R -pakettia. Tämän paketin käyttöön liittyy joitakin vaatimuksia: Linuxia varten tarvitaan C- ja C ++ -kääntäjä.

Tämän datatieteen R -ohjelmointipaketin asennus on:

install.packages (igraph)

Tämän paketin lataamiseksi sinun on kirjoitettava:

kirjasto (igraph)

Dokumentointi

15. ROCR


D -tieteen R -pakettia, ROCR, käytetään pisteytysluokittelijoiden suorituskyvyn visualisointiin. Tämä paketti on joustava ja helppokäyttöinen. Tarvitaan vain kolme komentoa ja valinnaisten parametrien oletusarvot. Tätä pakettia käytetään raja-parametroitujen 2D-suorituskykykäyrien kehittämiseen. Tässä paketissa on useita toimintoja, kuten ennustus (), joita käytetään luomaan ennustusobjekteja, suorituskyky () suorituskykyobjektien luomiseen jne.

Dokumentointi

16. DataExplorer


DataExplorer-paketti on yksi laajimmin helppokäyttöisistä R-paketeista tietotieteelle. Lukuisten datatieteellisten tehtävien joukossa yksi niistä on tutkiva tietoanalyysi (EDA). Tutkivien tietojen analysoinnissa data -analyytikon on kiinnitettävä enemmän huomiota tietoihin. Ei ole helppoa tarkistaa tai käsitellä tietoja manuaalisesti tai käyttää huonoa koodausta. Tietojen analysoinnin automatisointi on tarpeen.

Tämä tietotekniikan R -paketti tarjoaa tiedonetsinnän automatisoinnin. Tätä pakettia käytetään jokaisen muuttujan skannaamiseen ja analysointiin sekä visualisointiin. Siitä on hyötyä, kun tietojoukko on massiivinen. Joten tietojen analysointi voi poimia datan piilotetun tiedon tehokkaasti ja vaivattomasti.

Paketti voidaan asentaa CRANista suoraan alla olevan koodin avulla:

install.packages (DataExplorer)

Tämän R -paketin lataamiseksi sinun on kirjoitettava:

kirjasto (DataExplorer)

Dokumentointi

17. ml


Yksi R -koneoppimisen uskomattomimmista paketeista on mlr -paketti. Tämä paketti salaa useita koneoppimistehtäviä. Tämä tarkoittaa, että voit suorittaa useita tehtäviä käyttämällä vain yhtä pakettia, eikä sinun tarvitse käyttää kolmea pakettia kolmeen eri tehtävään.

Paketti mlr on käyttöliittymä lukuisille luokitus- ja regressiotekniikoille. Tekniikoita ovat koneellisesti luettavat parametrien kuvaukset, ryhmittely, yleinen näytteenotto, suodatus, ominaisuuksien poisto ja paljon muuta. Myös rinnakkaisia ​​toimintoja voidaan tehdä.

Asennuksessa sinun on käytettävä alla olevaa koodia:

install.packages (mlr)

Tämän paketin lataaminen:

kirjasto (mlr)

Dokumentointi

18. arules


Paketti, arules (Mining Association Rules and Frequent Itemsets), on laajalti käytetty R -koneoppimispaketti. Tämän paketin avulla voit tehdä useita toimintoja. Toiminnot ovat tietojen ja mallien esittelyä ja tapahtumien analysointia sekä tietojen käsittelyä. Saatavana on myös Apriori- ja Eclat -yhdistyskaivosalgoritmien C -toteutuksia.

Dokumentointi

19. mboost


Toinen datatieteen R -koneoppimispaketti on mboost. Tässä mallipohjaisessa tehostuspaketissa on toiminnallinen gradientin laskeutumisalgoritmi yleisten riskitoimintojen optimoimiseksi käyttämällä regressiopuita tai komponenttikohtaisia ​​pienimmän neliösumman arvioita. Se tarjoaa myös vuorovaikutusmallin mahdollisesti korkeammalle datalle.

Dokumentointi

20. juhla


Toinen paketti koneoppimisessa R: n kanssa on juhla. Tätä laskennallista työkalupakkia käytetään rekursiiviseen osiointiin. Tämän koneoppimispaketin päätoiminto tai ydin on ctree (). Se on laajalti käytetty toiminto, joka vähentää harjoitteluaikaa ja harhaa.

Ctree (): n syntaksi on:

ctree (kaava, tiedot)

Dokumentointi

Loppu ajatukset


R on niin merkittävä ohjelmointikieli, joka käyttää tilastollisia menetelmiä ja kaavioita tietojen tutkimiseen. Tarpeetonta sanoa, että tällä kielellä on useita R-koneoppimispaketteja, uskomaton RStudio-työkalu ja helposti ymmärrettävä syntaksi kehittyneiden koneoppimisprojekteja . R ml -paketissa on joitakin oletusarvoja. Ennen kuin käytät sitä ohjelmassasi, sinun on tiedettävä eri vaihtoehdot yksityiskohtaisesti. Käyttämällä näitä koneoppimispaketteja kuka tahansa voi rakentaa tehokkaan koneoppimisen tai datatieteen mallin. Lopuksi, R on avoimen lähdekoodin kieli, ja sen paketit kasvavat jatkuvasti.

Jos sinulla on ehdotuksia tai kysymyksiä, jätä kommentti kommenttiosioon. Voit myös jakaa tämän artikkelin ystäviesi ja perheesi kanssa sosiaalisen median kautta.

Excel pyöristetään kahden desimaalin tarkkuudella
Jaa Facebook Viserrys Pinterest WhatsApp ReddIt Sähke Viber

    1 KOMMENTTI

    1. william yarberry 27. huhtikuuta 2020 Klo 09:41

      Erinomainen kiertue saatavilla olevista paketeista. Kiitos.

      Vastaa

    JÄTÄ VASTAUS Peruuta vastaus

    Kommentti: Kirjoita kommenttisi! Nimi:* Kirjoita nimesi tähän Sähköposti:* Olet antanut virheellisen sähköpostiosoitteen! Kirjoita sähköpostiosoitteesi tähän Verkkosivusto:

    Tallenna nimeni, sähköpostiosoitteeni ja verkkosivustoni tähän selaimeen, kun seuraavan kerran kommentoin.

    spot_img

    Viimeisin postaus

    Windows -käyttöjärjestelmä

    Kuinka ottaa täyden levyn salaus käyttöön Windows 10 -järjestelmässä

    Android

    10 parasta kasvojen vaihtosovellusta Android- ja iOS -laitteille

    Windows -käyttöjärjestelmä

    Kuinka ajoittaa Windows 10 tyhjentämään roskakorin automaattisesti

    Android

    10 parasta laskutusohjelmaa Android -laitteelle maksettavaksi nopeasti

    Täytyy lukea

    ML & AI

    20 parasta AI -esimerkkiä ja koneoppimissovelluksia todellisessa maailmassa

    Data Science

    Top 10 syvän oppimisen algoritmia, jotka jokaisen tekoälyn harrastajan pitäisi tietää

    ML & AI

    10 parasta tekoälyn ja koneoppimisen ohjelmointikieltä

    Data Science

    Koneoppimisen esittely: Udacityn koneoppimiskurssi

    Liittyvä postaus

    Top 10 Deep Learning -projektien ideaa aloittelijoille ja ammattilaisille

    Kymmenen kehittyvää syvän oppimisen suuntausta lähitulevaisuudessa

    10 tärkeintä IoT vs M2M -käsitettä, jotka sinun on ymmärrettävä

    Top 10 syvän oppimisen algoritmia, jotka jokaisen tekoälyn harrastajan pitäisi tietää

    10 parasta kotiautomaatiota esineiden internetin avulla

    10 parasta ilmaisen ohjelmoinnin graafista käyttöliittymää R: lle



    ^